Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Angew Chem Int Ed Engl ; 63(20): e202401552, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38497693

ABSTRACT

The switching behavior of the novel hybrid material (FA)Na[Fe(CN)5(NO)].H2O (1) in response to temperature (T), light irradiation and electric field (E) is studied using in situ X-ray diffraction (XRD). Crystals of 1 display piezoelectricity, pyroelectricity, second and third harmonic generation. XRD shows that the FA+ are disordered at room-temperature, but stepwise cooling from 273-100 K induces gradual ordering, while cooling under an applied field (E=+40 kVcm-1) induces a sudden phase change at 140 K. Structural-dynamics calculations suggest the field pushes the system into a region of the structural potential-energy surface that is otherwise inaccessible, demonstrating that application of T and E offers an effective route to manipulating the crystal chemistry of these materials. Photocrystallography also reveals photoinduced linkage isomerism, which coexists with but is not correlated to other switching behaviors. These experiments highlight a new approach to in situ studies of hybrid materials, providing insight into the structure-property relationships that underpin their functionality.

2.
Adv Mater ; 36(18): e2311624, 2024 May.
Article in English | MEDLINE | ID: mdl-38281059

ABSTRACT

Stretchable self-powered sensors are of significant interest in next-generation wearable electronics. However, current strategies for creating stretchable piezoelectric sensors based on piezoelectric polymers or 0-3 piezoelectric composites face several challenges such as low piezoelectric activity, low sensitivity, and poor durability. In this paper, a biomimetic soft-rigid hybrid strategy is used to construct a new form of highly flexible, high-performance, and stretchable piezoelectric sensor. Inspired by the hinged bivalve Cristaria plicata, hierarchical droplet-shaped ceramics are manufactured and used as rigid components, where computational models indicate that the unique arched curved surface and rounded corners of this bionic structure can alleviate stress concentrations. To ensure electrical connectivity of the piezoelectric phase during stretching, a patterned liquid metal acts as a soft circuit and a silicone polymer with optimized wettability and stretchability serves as a soft component that forms a strong mechanical interlock with the hierarchical ceramics. The novel sensor design exhibits excellent sensitivity and durability, where the open circuit voltage remains stable after 5000 stretching cycles at 60% strain and 5000 twisting cycles at 180°. To demonstrate its potential in heathcare applications, this new stretchable sensor is successfully used for wireless gesture recognition and assessing the progression of knee osteoarthritis.

3.
Clin J Sport Med ; 34(1): 61-68, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37285595

ABSTRACT

OBJECTIVE: To investigate the link between dysfunction of the blood-brain barrier (BBB) and exposure to head impacts in concussed football athletes. DESIGN: This was a prospective, observational pilot study. SETTING: Canadian university football. PARTICIPANTS: The study population consisted of 60 university football players, aged 18 to 25. Athletes who sustained a clinically diagnosed concussion over the course of a single football season were invited to undergo an assessment of BBB leakage. INDEPENDENT VARIABLES: Head impacts detected using impact-sensing helmets were the measured variables. MAIN OUTCOME MEASURES: Clinical diagnosis of concussion and BBB leakage assessed using dynamic contrast-enhanced MRI (DCE-MRI) within 1 week of concussion were the outcome measures. RESULTS: Eight athletes were diagnosed with a concussion throughout the season. These athletes sustained a significantly higher number of head impacts than nonconcussed athletes. Athletes playing in the defensive back position were significantly more likely to sustain a concussion than remain concussion free. Five of the concussed athletes underwent an assessment of BBB leakage. Logistic regression analysis indicated that region-specific BBB leakage in these 5 athletes was best predicted by impacts sustained in all games and practices leading up to the concussion-as opposed to the last preconcussion impact or the impacts sustained during the game when concussion occurred. CONCLUSIONS: These preliminary findings raise the potential for the hypothesis that repeated exposure to head impacts may contribute to the development of BBB pathology. Further research is needed to validate this hypothesis and to test whether BBB pathology plays a role in the sequela of repeated head trauma.


Subject(s)
Brain Concussion , Football , Humans , Blood-Brain Barrier/injuries , Brain Concussion/diagnosis , Canada , Football/injuries , Prospective Studies , Universities
4.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-37732198

ABSTRACT

Current strategies to understand the molecular basis of Marek's disease virus (MDV) virulence primarily consist of cataloguing divergent nucleotides between strains with different phenotypes. However, each MDV strain is typically represented by a single consensus genome despite the confirmed existence of mixed viral populations. To assess the reliability of single-consensus interstrain genomic comparisons, we obtained two additional consensus genomes of vaccine strain CVI988 (Rispens) and two additional consensus genomes of the very virulent strain Md5 by sequencing viral stocks and cultured field isolates. In conjunction with the published genomes of CVI988 and Md5, this allowed us to perform 3-way comparisons between consensus genomes of the same strain. We found that consensus genomes of CVI988 can vary in as many as 236 positions involving 13 open reading frames (ORFs). In contrast, we found that Md5 genomes varied only in 11 positions involving a single ORF. Phylogenomic analyses showed all three Md5 consensus genomes clustered closely together, while also showing that CVI988 GenBank.BAC diverged from CVI988 Pirbright.lab and CVI988 USDA.PA.field . Comparison of CVI988 consensus genomes revealed 19 SNPs in the unique regions of CVI988 GenBank.BAC that were not present in either CVI988 Pirbright.lab or CVI988 USDA.PA.field . Finally, we evaluated the genomic heterogeneity of CVI988 and Md5 populations by identifying positions with >2% read support for alternative alleles in two ultra-deeply sequenced samples. We were able to confirm that both populations of CVI988 and Md5 were mixed, exhibiting a total of 29 and 27 high-confidence minor variant positions, respectively. We did not find any evidence of minor variants in the positions corresponding to the 19 SNPs in the unique regions of CVI988 GenBank.BAC . Taken together, our findings confirm that consensus genomes of the same strain of MDV can vary and suggest that multiple consensus genomes per strain are needed in order to maximize the accuracy of interstrain genomic comparisons.

5.
Adv Sci (Weinh) ; 11(2): e2305163, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37984867

ABSTRACT

Soft robotic bodies are susceptible to mechanical fatigue, punctures, electrical breakdown, and aging, which can result in the degradation of performance or unexpected failure. To overcome these challenges, a soft self-healing robot is created using a thermoplastic methyl thioglycolate-modified styrene-butadiene-styrene (MG-SBS) elastomer tube fabricated by melt-extrusion, to allow the robot to self-heal autonomously at room temperature. After repeated damage and being separated into several parts, the robot is able to heal its stiffness and elongation to break to enable almost complete recovery of robot performance after being allowed to heal at room temperature for 24 h. The self-healing capability of the robot is examined across the material scale to robot scale by detailed investigations of the healing process, healing efficiency, mechanical characterization of the robot, and assessment of dynamic performance before and after healing. The self-healing robot is driven by a new micro two-way shape-memory alloy (TWSMA) spring actuator which achieved a crawling speed of 21.6 cm/min, equivalent to 1.57 body length per minute. An analytical model of the robot is created to understand the robot dynamics and to act as an efficient tool for self-healing robot design and optimization. This work therefore provides a new methodology to create efficient, robust, and damage-tolerant soft robots.

6.
Nanomicro Lett ; 16(1): 11, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37943399

ABSTRACT

Humans can perceive our complex world through multi-sensory fusion. Under limited visual conditions, people can sense a variety of tactile signals to identify objects accurately and rapidly. However, replicating this unique capability in robots remains a significant challenge. Here, we present a new form of ultralight multifunctional tactile nano-layered carbon aerogel sensor that provides pressure, temperature, material recognition and 3D location capabilities, which is combined with multimodal supervised learning algorithms for object recognition. The sensor exhibits human-like pressure (0.04-100 kPa) and temperature (21.5-66.2 °C) detection, millisecond response times (11 ms), a pressure sensitivity of 92.22 kPa-1 and triboelectric durability of over 6000 cycles. The devised algorithm has universality and can accommodate a range of application scenarios. The tactile system can identify common foods in a kitchen scene with 94.63% accuracy and explore the topographic and geomorphic features of a Mars scene with 100% accuracy. This sensing approach empowers robots with versatile tactile perception to advance future society toward heightened sensing, recognition and intelligence.

7.
Natl Sci Rev ; 10(10): nwad218, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37671328
8.
Inorg Chem ; 62(33): 13467-13475, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37545093

ABSTRACT

Currently, the intrinsic instability of organic-inorganic hybrid perovskite nanocrystals (PNCs) at high temperature and high humidity still stands as a big barrier to hinder their potential applications in optoelectronic devices. Herein, we report the controllable in-situ-grown PNCs in polyvinylidene fluoride (PVDF) polymer with profoundly enhanced hygrothermal stability. It is found that the introduced tetradecylphosphonic acid (TDPA) ligand enables significantly improved binding to the surface of PNCs via a strong covalently coordinated P-O-Pb bond, as evidenced by density functional theory calculations and X-ray photoelectron spectroscopy analyses. Accordingly, such enhanced binding could not only make efficient passivation of the surface defects of PNCs but also enable the remarkably suppressed desorption of the ligand from the PNCs under high-temperature environments. Consequently, the photoluminescence quantum yield (PL QY) of the as-fabricated MAPbBr3-PNCs@PVDF film exhibits almost no decay after exposure to air at 333 K over 1800 h. Once the temperatures are increased from 293 to 353 K, their PL intensity can be kept as 88.6% of the initial value, much higher than that without the TDPA ligand (i.e., 42.4%). Moreover, their PL QY can be maintained above 50% over 1560 h (65 days) under harsh working conditions of 333 K and 90% humidity. As a proof of concept, the as-assembled white light-emitting diodes display a large color gamut of 125% National Television System Committee standard, suggesting their promising applications in backlight devices.

9.
Chem Commun (Camb) ; 59(48): 7423-7426, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37249207

ABSTRACT

A blue light mediated photochemical process using solid graphitic carbon nitride (g-C3N4) in ambient air/isopropanol vapour is suggested to be linked to "nanophase" water inclusions and is shown to produce approx. 50 µmol H2O2 per gram of g-C3N4, which can be stored in the solid g-C3N4 for later release for applications, for example, in disinfection or anti-bacterial surfaces.

10.
Digit Health ; 9: 20552076231173569, 2023.
Article in English | MEDLINE | ID: mdl-37214662

ABSTRACT

Objective: Neurodegenerative diseases affect millions of families around the world, while various wearable sensors and corresponding data analysis can be of great support for clinical diagnosis and health assessment. This systematic review aims to provide a comprehensive overview of the existing research that uses wearable sensors and features for the diagnosis of neurodegenerative diseases. Methods: A systematic review was conducted of studies published between 2015 and 2022 in major scientific databases such as Web of Science, Google Scholar, PubMed, and Scopes. The obtained studies were analyzed and organized into the process of diagnosis: wearable sensors, feature extraction, and feature selection. Results: The search led to 171 eligible studies included in this overview. Wearable sensors such as force sensors, inertial sensors, electromyography, electroencephalography, acoustic sensors, optical fiber sensors, and global positioning systems were employed to monitor and diagnose neurodegenerative diseases. Various features including physical features, statistical features, nonlinear features, and features from the network can be extracted from these wearable sensors, and the alteration of features toward neurodegenerative diseases was illustrated. Moreover, different kinds of feature selection methods such as filter, wrapper, and embedded methods help to find the distinctive indicator of the diseases and benefit to a better diagnosis performance. Conclusions: This systematic review enables a comprehensive understanding of wearable sensors and features for the diagnosis of neurodegenerative diseases.

11.
Glob Chall ; 7(4): 2100140, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37020619

ABSTRACT

This paper presents a piezoelectric wind energy harvester that operates by a galloping mechanism with different shaped attachments attached to a bluff body. A comparison is made between harvesters that consist of different shaped attachments on a bluff body; these include triangular, circular, square, Y-shaped, and curve-shaped attachments. Simulation of the pressure field and the velocity field variation around the different shaped bluff bodies is performed and it is found that a high pressure difference creates a high lift force on the bluff body with curve-shaped attachments. A theoretical model based on a galloping mechanism is presented, which is verified by experiments. It is observed that the proposed harvester with curve-shaped attachments provides the best performance, where the harvester with a curve-shaped attachments provides the highest voltage and power output compared to the other shaped harvesters examined in this study. This paper provides a new concept for improving the power performance of the piezoelectric wind energy harvesters with modifications made on the bluff body.

13.
Rheumatology (Oxford) ; 62(2): 685-695, 2023 02 01.
Article in English | MEDLINE | ID: mdl-35699463

ABSTRACT

OBJECTIVE: Extensive blood-brain barrier (BBB) leakage has been linked to cognitive impairment in SLE. This study aimed to examine the associations of brain functional connectivity (FC) with cognitive impairment and BBB dysfunction among patients with SLE. METHODS: Cognitive function was assessed by neuropsychological testing (n = 77). Resting-state FC (rsFC) between brain regions, measured by functional MRI (n = 78), assessed coordinated neural activation in 131 regions across five canonical brain networks. BBB permeability was measured by dynamic contrast-enhanced MRI (n = 61). Differences in rsFC were compared between SLE patients with cognitive impairment (SLE-CI) and those with normal cognition (SLE-NC), between SLE patients with and without extensive BBB leakage, and with healthy controls. RESULTS: A whole-brain rsFC comparison found significant differences in intra-network and inter-network FC in SLE-CI vs SLE-NC patients. The affected connections showed a reduced negative rsFC in SLE-CI compared with SLE-NC and healthy controls. Similarly, a reduced number of brain-wide connections was found in SLE-CI patients compared with SLE-NC (P = 0.030) and healthy controls (P = 0.006). Specific brain regions had a lower total number of brain-wide connections in association with extensive BBB leakage (P = 0.011). Causal mediation analysis revealed that 64% of the association between BBB leakage and cognitive impairment in SLE patients was mediated by alterations in FC. CONCLUSION: SLE patients with cognitive impairment had abnormalities in brain rsFC which accounted for most of the association between extensive BBB leakage and cognitive impairment.


Subject(s)
Cognitive Dysfunction , Lupus Erythematosus, Systemic , Humans , Blood-Brain Barrier/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/etiology , Cognition/physiology , Magnetic Resonance Imaging , Lupus Erythematosus, Systemic/complications
14.
Adv Mater ; 35(50): e2203786, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35701188

ABSTRACT

Stretchable strain sensors are highly desirable for human motion monitoring, and can be used to build new forms of bionic robots. However, the current use of flexible strain gauges is hindered by the need for an external power supply, and the demand for long-term operation. Here, a new flexible self-powered strain sensor system based on an electromagnetic generator that possesses a high stretchability in excess of 150%, a short response time of 30 ms, and an excellent linearity (R2  > 0.98), is presented. Based on this new form of sensor, a human-machine interaction system is designed to achieve remote control of a robot hand and vehicle using a human hand, which provides a new scheme for real-time gesture interaction.


Subject(s)
Wearable Electronic Devices , Humans , Motion , Hand , Electric Power Supplies
16.
Sci Rep ; 12(1): 22174, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36550188

ABSTRACT

Neuroimaging with [2,2-dimethyl-3-[(2R,3E)-3-oxidoiminobutan-2-yl]azanidylpropyl]-[(2R,3E)-3-hydroxyiminobutan-2-yl]azanide;oxo(99Tc)technetium-99(3+) ([99mTc]HMPAO) single photon emission computed tomography (SPECT) is used in Alzheimer's disease (AD) to evaluate regional cerebral blood flow (rCBF). Hypoperfusion in select temporoparietal regions has been observed in human AD. However, it is unknown whether AD hypoperfusion signatures are also present in the 5XFAD mouse model. The current study was undertaken to compare baseline brain perfusion between 5XFAD and wild-type (WT) mice using [99mTc]HMPAO SPECT and determine whether hypoperfusion is recapitulated in 5XFAD mice. 5XFAD and WT mice underwent a 45 min SPECT scan, 20 min after [99mTc]HMPAO administration. Whole brain and regional standardized uptake values (SUV) and regional relative standardized uptake values (SUVR) with whole brain reference were compared between groups. Brain perfusion was similar between WT and 5XFAD brains. Whole brain [99mTc]HMPAO retention revealed no significant difference in SUV (5XFAD, 0.372 ± 0.762; WT, 0.640 ± 0.955; p = 0.536). Similarly, regional analysis revealed no significant differences in [99mTc]HMPAO metrics between groups (SUV: 0.357 ≤ p ≤ 0.640; SUVR: 0.595 ≤ p ≤ 0.936). These results suggest apparent discrepancies in rCBF between human AD and the 5XFAD model. Establishing baseline perfusion patterns in 5XFAD mice is essential to inform pre-clinical diagnostic and therapeutic drug discovery programs.


Subject(s)
Alzheimer Disease , Humans , Animals , Mice , Alzheimer Disease/diagnostic imaging , Technetium Tc 99m Exametazime , Tomography, Emission-Computed, Single-Photon/methods , Brain/diagnostic imaging , Perfusion , Cerebrovascular Circulation/physiology , Organotechnetium Compounds , Radiopharmaceuticals
17.
Sci Rep ; 12(1): 22610, 2022 12 30.
Article in English | MEDLINE | ID: mdl-36585424

ABSTRACT

Finite element studies were conducted on 0.5Ba(Zr0.2 Ti0.8) O3-0.5(Ba0.7 Ca0.3)TiO3 (BCZT) piezoelectric particles embedded in polyethylene matrix to create a piezocomposite having a positive and negative Poisson's ratio of -0.32 and 0.2. Polyethylene with a positive Poisson's ratio is referred to as non-auxetic while those with negative Poisson's ratio are referred to as auxetic or inherently auxetic. The effective elastic and piezoelectric properties were calculated at volume fractions of (4%, 8% to 24%) to study their sensing and harvesting performance. This study compared lead-free auxetic 0-3 piezocomposite for sensing and energy harvesting with non-auxetic one. Inherently auxetic piezocomposites have been studied for their elastic and piezoelectric properties and improved mechanical coupling, but their sensing and energy harvesting capabilities and behavior patterns have not been explored in previous literatures. The effect of Poisson's ratio ranging between -0.9 to 0.4 on the sensing and energy harvesting performance of an inherently auxetic lead free piezocomposite composite with BCZT inclusions has also not been studied before, motivating the author to conduct the present study. Auxetic piezocomposite demonstrated an overall improvement in performance in terms of higher sensing voltage and harvested power. The study was repeated at a constant volume fraction of 24% for a range of Poisson's ratio varied between -0.9 to 0.4. Enhanced performance was observed at the extreme negative end of the Poisson's ratio spectrum. This paper demonstrates the potential improvements by exploiting auxetic matrices in future piezocomposite sensors and energy harvesters.


Subject(s)
Polyethylene , Titanium , Physical Phenomena
18.
ACS Appl Mater Interfaces ; 14(47): 53261-53273, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36379056

ABSTRACT

Flexible piezoelectric nanogenerators are playing an important role in delivering power to next-generation wearable electronic devices due to their high-power density and potential to create self-powered sensors for the Internet of Things. Among the range of available piezoelectric materials, poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)-based piezoelectric composites exhibit significant potential for flexible piezoelectric nanogenerator applications. However, the high electric fields that are required for poling cannot be readily applied to polymer composites containing piezoelectric fillers due to the high permittivity contrast between the filler and matrix, which reduces the dielectric strength. In this paper, novel Ag-decorated BCZT heterostructures were synthesized via a photoreduction method, which were introduced at a low level (3 wt %) into the matrix of PVDF-TrFE to fabricate piezoelectric composite films. The effect of Ag nanoparticle loading content on the dielectric, ferroelectric, and piezoelectric properties was investigated in detail, where a maximum piezoelectric energy-harvesting figure of merit of 5.68 × 10-12 m2/N was obtained in a 0.04Ag-BCZT NWs/PVDF-TrFE composite film, where 0.04 represents the concentration of the AgNO3 solution. Modeling showed that an optimum performance was achieved by tailoring the fraction and distribution of the conductive silver nanoparticles to achieve a careful balance between generating electric field concentrations to increase the level of polarization, while not degrading the dielectric strength. This work therefore provides a strategy for the design and manufacture of highly polarized piezoelectric composite films for piezoelectric nanogenerator applications.

19.
Nanomicro Lett ; 14(1): 198, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36201086

ABSTRACT

Coupled nanogenerators have been a research hotspot due to their ability to harvest a variety of forms of energy such as light, mechanical and thermal energy and achieve a stable direct current output. Ferroelectric films are frequently investigated for photovoltaic applications due to their unique photovoltaic properties and bandgap-independent photovoltage, while the flexoelectric effect is an electromechanical property commonly found in solid dielectrics. Here, we effectively construct a new form of coupled nanogenerator based on a flexible BiFeO3 ferroelectric film that combines both flexoelectric and photovoltaic effects to successfully harvest both light and vibration energies. This device converts an alternating current into a direct current and achieves a 6.2% charge enhancement and a 19.3% energy enhancement to achieve a multi-dimensional "1 + 1 > 2" coupling enhancement in terms of current, charge and energy. This work proposes a new approach to the coupling of multiple energy harvesting mechanisms in ferroelectric nanogenerators and provides a new strategy to enhance the transduction efficiency of flexible functional devices.

20.
Inorg Chem ; 61(44): 17746-17758, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36282246

ABSTRACT

To provide new insights for understanding the influence of B site cations on the structure in chlorometallate materials of the form ABn+Cln+2, we report novel organic-inorganic hybrid metallates (OIHMs) incorporating histammonium (HistNH3) dications and various transition-metal and main group B site cations. Single crystals of OIHMs with the basic formula (HistNH3Mn+Cln+2, M = Fe, Co, Ni, Cu, Zn, Cd, Hg, Sb, Sn, Pb, Bi) were grown and their structures characterized by single-crystal X-ray crystallography. HistNH3CoCl4, HistNH3ZnCl4, and HistNH3SbCl5 were crystallized in a non-centrosymmetric space group and were subsequently studied with piezoresponse force microscopy (PFM). While bulk measurements of crystals and poly(vinylidene difluoride) (PVDF)/metallate composite films exhibited low bulk response values, the surface-measured local response values using PFM were 5.17 pm/V for HistNH3CoCl4, 22.6 pm/V for HistNH3ZnCl4, and 2.9 pm/V for HistNH3SbCl5 compared with 2.50 pm/V for PVDF reference samples. The magnitudes of the d33 coefficient, net dipole, and cation-Cl bond dipole obtained from the density functional theory calculations confirm the higher response in HistNH3ZnCl4 compared to HistNH3CoCl4. Density of states and crystal orbital Hamilton population analysis indicate that the higher net dipole in HistNH3ZnCl4 compared to HistNH3CoCl4 is due to the lower hybridization of the M-Cl bond.

SELECTION OF CITATIONS
SEARCH DETAIL
...